DO NOW

Find the second derivative of: $y^2 = x^2 + 2x$

3.5 Implicit Differentiation- Day 3

Logarithmic Differentiation:

- ** Take In of both sides
- ** Use to differentiate Sums and differences instead of products and quotients.
- ** Put in terms of x only by substituting the original y = value into the derivative if possible.

Page 1

Page 2

Use logarithmic differentiation to find the derivative.

1.
$$y = x^{x-1}$$
 $lny = ln \times$
 $lny = (x-1) ln \times$
 $\frac{1}{y} \cdot y^{1} = (x-1) \cdot \frac{1}{x} + ln \times (1)$
 $y' = y \left(\frac{x-1}{x} + ln \times \right)$
 $y' = x^{x-1} \left(\frac{x-1}{x} + ln \times \right)$
 $y' = x^{x-1} \left(\frac{1}{x} \right) \left(x - l + x \ln x \right)$
 $y' = x^{x-2} \left(\frac{1}{x} - l + x \ln x \right)$
 $y' = x^{x-2} \left(\frac{1}{x} - l + x \ln x \right)$
 $y' = x^{x-2} \left(x - l + x \ln x \right)$

Page 3

2. $y = \sqrt[3]{\frac{x^2+1}{x^2-1}}$ $lny = ln \sqrt[3]{\frac{x^2+1}{x^2-1}}$ $lny = \frac{1}{3} ln(\frac{x^2+1}{x^2-1})$ $lny = \frac{1}{3} (ln(x^2+1) - ln(x^2-1))$ $\frac{1}{y} = \frac{1}{3} (\frac{2x}{x^2+1} - \frac{2y}{x^2-1})$ $\frac{1}{y} = \frac{1}{3} (\frac{2y(x^2-1) - 2y(x^2+1)}{(x^2+1)(x^2-1)})$ $\frac{1}{y} = \frac{1}{3} (\frac{2y^3 - 2x - 2x^3 - 2x}{x^4 - 1})$ $\frac{1}{y} = \frac{1}{3} (\frac{2y^3 - 2x - 2x^3 - 2x}{x^4 - 1})$ $\frac{1}{y} = \frac{1}{3} (\frac{2y^3 - 2x - 2x^3 - 2x}{x^4 - 1})$

Page 4

HOMEWORK

pg 173; 56, 63, 65 - 67, 71, 73